
Chapter 2

Quark-Gluon Plasma and the Early

Universe

There is now considerable evidence that the universe began as a fireball, the so called “Big-Bang”,
with extremely high temperature and high energy density. At early enough times, the temperature
was certainly high enough (T > 100 GeV) that all the known particles (including quarks, leptons,
gluons, photons, Higgs bosons, W and Z) were extremely relativistic. Even the “strongly inter-
acting” particles, quarks and gluons, would interact fairly weakly due to asymptotic freedom and
perturbation theory should be sufficient to describe them. Thus this was a system of hot, weakly
interacting color-charged particles, a quark-gluon plasma (QGP), in equilibrium with the other
species.

Due to asymptotic freedom, at sufficiently high temperature the quark-gluon plasma can be
well-described using statistical mechanics as a free relativistic parton gas. In this Chapter, we
explore the physics of QGP, perhaps the simplest system of strong-interaction particles that exists
in the context of QCD. As the universe cooled during the subsequent expansion phase, the quarks,
antiquarks, and gluons combined to form hadrons resulting in the baryonic matter that we observe
today. The transition from quarks and gluons to baryons is a fascinating subject that has been
difficult to address quantitatively. However, we will discuss this transition by considering the basic
physics issues without treating the quantitative details. At present there is a substantial effort in
theoretical physics to address this transition by using high-level computational methods known as
lattice gauge theory. This subject is somewhat technical and we will discuss it only very briefly.
However, the general features that have emerged from lattice studies to date are rather robust and
can be discussed in some detail.

The relatively cold matter that presently comprises everything around us is actually a residue
of the annihilation of matter and anti-matter in the early universe. The origin of the matter-
antimatter asymmetry which is critical for generating the small amount of residual matter is still
a major subject of study, and we discuss this topic at the end of this Chapter.

Another major thrust associated with the transition between the QGP and baryonic matter is
the experimental program underway to study observable phenomena associated with the dynamics
of this interface. This experimental program involves the collision of relativistic heavy ions that
should produce (relatively) small drops of QGP. Large particle detector systems then enable studies
of the products of these collisions, which can (in principle) yield information on the transition to
the baryonic phase and the QGP itself. The program of experiments and the present state of the
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experimental data will be discussed in Chapter XX.

2.1 Thermodynamics of A Hot Relativistic Gas

At very high-temperature such that the particles have energy much larger than their rest mass,
we may describe them using relativistic kinematics and ignore their masses. Thus these energetic
weakly interacting particles form a system that is, to an excellent approximation, a hot relativistic
free gas. Since particles and antiparticles can be created and annihilated easily in such an environ-
ment, their densities are much higher than their differences. Therefore the chemical potential µ can
be neglected. The number densities of the partons (species i) are then described by the quantum
distribution functions

ni =

∫

d3pi

(2π)3
1

eβEi ± 1
, (2.1)

where β = 1/kBT and the − sign is for bosons and the + is for fermions. For relativistic particles,
pi = Ei. For Eiβ < 1, the exponential factor is small and there is a large difference between
fermions and bosons. For Eiβ ≥ 1 the ±1 becomes increasingly unimportant, and the distributions
become similar. Integrating over the phase space, one finds,

ni =

{

ζ(3)/π2T 3 (boson)
(3/4)ζ(3)/π2T 3 (fermion)

(2.2)

where ζ(3) = 1.20206... is a Riemann zeta function. The T 3-dependence follows simply from
dimensional analysis (the Boltzmann constant kB can also be taken to be 1).

The energy density for a free gas can be computed from the same quantum distribution func-
tions:

ǫi =

∫

d3pi

(2π)3
Ei

eβEi ± 1

=

{

π2/30T 4 (boson)
(7/8)(π2/30)T 4 (fermion)

(2.3)

where the fermion energy density is 7/8 of that of boson.
These expressions are valid for each spin/flavor/charge/color state of each particle. For a system

of fermions and bosons, we need to include separate degeneracy factors for the various particles:

ǫ =
∑

i

giǫi

= g∗
π2

30
(kBT )4 , (2.4)

where g∗ =
(

gb + 7
8
gf

)

with gb and gf are the degeneracy factors for bosons and fermions, respec-

tively. Each of these degeneracy factors counts the total number of degrees of freedom, summed
over the spins, flavors, charge (particle-antiparticle) and colors of particles. When some species are
thermally decoupled from others due to the absence of interactions (such as neutrinos at present
epoch), they no longer contribute to the degeneracy factor. For example, at temperature above 100
GeV, all particles of the standard model are present. At lower temperatures, the W and Z bosons,
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top, bottom, and charm quarks freeze out and g∗ decreases. Therefore g∗ is generally a decreasing
function of temperature.

We can now calculate the contribution to the energy density from the quark-gluon plasma as a
relativistic free parton gas. For a gluon, there are 2 helicity states and 8 choices of color so we have
a total degeneracy of gb = 16. For each quark flavor, there are 3 colors, 2 spin states, and 2 charge
states (corresponding to quarks and antiquarks). At temperatures below kBT ∼ 1 GeV, there are
3 active flavors (up, down and strange) so we expect the fermion degeneracy to be a large number
like gf ≃ 36 in this case. Thus we expect for the QGP:

ǫQGP ≃ 47.5
π2

30
(kBT )4 . (2.5)

With two quark flavors, the prefactor is g∗ = 37. (For reference, if one takes into account all
standard model particles, g∗ = 106.75.)

The pressure of the free gas can be calculated just like the case of black-body radiation. For
relativistic species,

p =
1

3
ǫ , (2.6)

which is the equation of state.
To calculate the entropy of the relativistic gas, we consider the thermodynamics relation, dE =

TdS − pdV . At constant volume we would have just dE = TdS, or dǫ = Tds where ǫ (s) is the
energy (entropy) per unit volume. Since ǫ ∝ T 4, we can easily find that

s =
4

3

ǫ

T
. (2.7)

For an isolated system of relativistic particles, we expect the total entropy to be conserved.
Now using Eq. 2.4 one can easily see that

s ∝ g∗(T )T 3 , (2.8)

where g∗(T ) counts the number of active (i.e., non-frozen) degrees of freedom in equilibrium. The
total entropy of the active species is given by

S ∝ sR3 ∝ g∗(T )T 3R3 , (2.9)

which is conserved in adiabatic processes.

2.2 The Early Partonic Universe

It has been established, since Hubble’s first discovery in the 1920’s, that the universe has been
expanding for about ∼ 10 billion years. The universe as we know it began as a “big bang”
where it was much smaller and hotter, and then evolved by expansion and cooling. Our present
understanding of the laws of physics allows us to talk about the earliest moment at the so-called
Planck time tP ∼ 10−43 when the temperature of the universe is at the Planck scale T ∼Mpl

Mpl ≡
√

h̄c

GN
(2.10)

= 1.22 × 1019 GeV , (2.11)
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where GN is Newton’s gravitational constant, and h̄ and c are set to 1 unless otherwise specified.
However, at this scale, the gravitational interaction is strong, the classical concept of space-time
might break down. At times later than the Planck epoch when the universe has cooled below Mpl,
space-time may be described by a classical metric tensor gµν , and the laws of physics as we know
them should be applicable.

Since the observed universe is homogeneous and isotropic to a great degree, its expansion can
be described by the Robertson-Walker space-time metric,

ds2 = gµνdx
µdxν = dt2 −R2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]

, (2.12)

which describes a maximally symmetric 3D space, where R(t) is a scale parameter describing the
expansion and k is a curvature parameter with k = +1,−1, 0, corresponding to closed, open and
flat universe, respectively.

The expansion of the universe after the Planck time is described by Einstein’s equation of
general relativity, which equates the curvature tensor of the space-time to the energy-momentum
tensor T µν . The energy-momentum density comes from both matter and radiation and the vacuum
Λgµν contribution, the infamous “cosmological constant” of Einstein. If the matter expands as
ideal gas, the energy-momentum density is

Tµν = −pgµν + (ρ+ p)uµuν , (2.13)

where p is the pressure and ρ is the energy density, and uµ = (1, 0, 0, 0) defines the cosmological
comoving frame. The resulting dynamical equation for the scale parameter is

(

Ṙ

R

)2

=
8πGNρ

3
− k

R2
+

Λ

3
, (2.14)

which is called the Friedmann (or Friedmann-Lemaitre equation). Ṙ/R = H is the expansion
rate (Hubble constant). Another equation needed for studying the expansion comes from energy-
momentum conservation,

ρ̇ = −3H(ρ+ p) . (2.15)

Together with the equation of state p = p(ρ), the above equations can be solved to yield the
evolution of ρ as a function of the scale parameter. There is now strong experimental evidence that
we are living in a universe with k = 0 and Λ has been negligibly small until recently. Hence, we
will focus below on a simplified Friedmann equation for the early universe without the second and
third terms on the right-hand side in 2.14.

When the temperature was lower than the Planck scale, the universe was an expanding gas
of relativistic particles. These particles include quarks and leptons, the gauge bosons such as
photons, gluons, and W and Z bosons, and perhaps more exotic particles like the supersymmetric
partners of the standard model particles, heavy right-handed neutrinos, gauge bosons related to
grand unification theories, etc. As the temperature cooled below the masses of certain particles
(such as the W and Z bosons) they “freeze out” and decay, i.e., they are not longer created by
inverse reactions of their decay products due to the lower temperature. Some of these particles
with a short life time had disappeared long ago, and some with a long life time may still be with
us today in the form of dark matter.



24 CHAPTER 2. QUARK-GLUON PLASMA AND THE EARLY UNIVERSE

Thus we expect that when the temperature drops below the electroweak scale (T < 100 GeV)
the early universe will be a hot gas of the standard model particles: quarks, leptons, gluons and
photons. Since the system is dominated by the strongly interacting degrees of freedom, quarks
and gluons (i.e., partons), it is a good approximation to regard it as a system of quark-gluon
plasma. Because of asymptotic freedom, the interaction between quarks and gluons are fairly weak
at high-temperature, and it shall be a good approximation to describe the plasma in terms of a
non-interacting parton gas.

During this phase of the universe, the energy density ρ is dominated by these relativistic partons
and decreases as the universe expands. The evolution of ρ during this time is governed by the fact
that we have a gas of relativistic partons. The volume of any piece of the universe increases like
R3, but the energy in every mode decreases as R−1 (as the wavelength of the mode expands with
the universe). Thus we expect

ρ ∝ R−4 , (2.16)

and Eq. 2.14 then yields

Ṙ ∼ R−1 , (2.17)

which has the solution R ∼
√
t. That is, the size of the universe increases as the square root of

time. The energy density then decreases as ρ ∼ t−2.

If we assume that the number of effective degrees of freedom, g∗ is constant during the early
evolution of the radiation-dominated universe then the radiation energy density (ρ ∝ T 4, as in
Eq. 2.4) with its variation as R (Eq. 2.16), we find that the temperature varies inversely as the
radius parameter T ∝ R−1 and therefore T ∝ t−1/2. Note that according to Eq. 2.7 this also implies
that the total entropy of the universe is conserved. We then obtain the following relation for the
temperature as a function of time:

T (t) ≃
√

h̄MP l

(g∗)1/2t
. (2.18)

If we invert this relation to yield

t ≃ h̄MP l

(g∗)1/2T 2
(2.19)

we can construct the timeline for the temperature of the early universe from 10−43 sec. through
about 106 yr. when the radiation dominated phase ends.

Figure 2.1: History of the universe for temperatures less than kBT ∼ 100 GeV.
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We have assumed that g∗ is constant in obtaining these results. However, we do need to consider
the fact that as the temperature drops some particles freeze out, and so g∗(T ) then changes. This
will modify the expressions 2.18 and 2.18. However, the basic behavior of the expanding universe
is qualitatively described by these relations, especially noting that in Eq. 2.18 the dependence of

the temperature on g∗ is very mild (T ∝ g
−1/4
∗ ).

2.3 The Quark-Gluon Plasma in Perturbative QCD

Until this point we have been treating the quarks and gluons in the QGP as free particles without
interactions. Of course, in a high-temperature QGP we expect QCD perturbative theory to be ap-
plicable due to asymptotic freedom. One important additional consequence is that chiral symmetry
is now a good symmetry, and the chiral condensate must vanish in the plasma

〈QGP|ψψ|QGP〉 = 0 , (2.20)

where strictly-speaking the QGP “state” is actually the thermal average over the excited states of
the QCD vacuum when the baryon number density is ignored.

Another important feature of the QGP is color deconfinement. In QCD perturbation theory,
the quarks and gluons are free particles that can be described by plane waves. Asymptotic freedom
will guarantee that high momentum transfer interactions are weak. Small-momentum transfer
scattering involves long distance interactions which are screened by the plasma (although this is
only strictly true in the color electric sector). As such, the charged quarks and gluons can move
freely inside the plasma without being confined to a local region. This remarkable property is
radically different from the low energy limit of QCD where all charges are permanently confined to
the interior of hadronsa scale about 1 fermi.

Consider a color charge in midst of a color-neutral plasma. The other particles in the plasma will
act to screen it, and as a consequence the interaction between color charges is damped exponentially.
To calculate the screening length, one can start from a color charge and calculate its induced color
fields. The result is a correlation function of gluon fields. This function can be calculated in
perturbation theory at high-temperature, and the result for the screening mass is

m2
D = g2T 2 . (2.21)

to leading order in the strong coupling expansion. The so-called Debye screening length is simply
1/mD or 1/gT , which is very short at high-temperature. When the color charges are screened in a
plasma, it has a finite energy and therefore in this sense, the color charges are now liberated.

Unfortunately, the magnetic interaction is only weakly screened; it has a screening mass of order
g2T . Absence of the magnetic screening means that the magnetic sector of the QCD remains non-
perturbative even at high-temperature. Fortunately, at high-temperature this non-perturbative
part contributes to physical observables only at higher-order in QCD coupling, so the free gas
behavior is dominant.

Another important feature of the plasma is the plasma frequency. In a QED plasma, light
cannot propagate below the plasma frequency, ωpl = (ne2/m)1/2, but will be reflected from the
surface, like in a silver-plated mirror. The physics of the QGP is similar: gluons (plasmon) cannot
propagate as a free field in the plasma if its energy is too low. In fact, the gluons acquire an effective
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mass which is effectively the plasma frequency. Perturbative calculations confirms this behavior,
and to leading order in perturbation theory the plasma frequency is

ωpl =
1

3

√

Nc +Nf/2(gT ) . (2.22)

where Nc = 3 is the number of color and Nf is the number of fermion flavor. The transverse-
polarized gluon modes acquire the same mass.

The plasmon and transverse gluon modes are damped in the plasma. One can calculate the
damping rate using the so-called hard-thermal loop method in pQCD and the result is gauge-
invariant: γ = ag2NCT/(24π), where numerically a is found to be a = 6.63538.

The results we discussed above are the basic leading-order predictions of pQCD. Higher-order
contributions can and have been calculated in the literature. Unfortunately perturbative expansions
for thermodynamical properties of the plasma converge very slowly. As such, the free plasma picture
works only at extremely high-temperature. Even at the temperatures corresponding to 100 GeV
the perturbative expansion must be reorganized significantly to get a sensible prediction. We will
come back to this point later.

2.4 Transition to the Low-Temperature Phase: Physical Argu-

ments

As we have discussed in the previous chapter, the zero temperature ground state of QCD is strikingly
different from the high-temperature QGP: color charges are confined to the interior of individual
hadrons and chiral symmetry is broken spontaneously. Therefore, as the plasma cools in the
universe, some rapid changes in thermodynamic observables must occur from the high-temperature
QGP phase to the low-temperature confining and chiral-symmetry breaking phase, where the quarks
and gluons combine to form colorless states of hadronic matter.

It is possible to estimate the transition temperature by comparing the QGP gas pressure with
that of hadronic gas. The lightest hadrons are pions, and for T < 1 GeV (note that in the following
we often use units where kB = 1 and T has units of energy), we might expect a gas of relativistic
pions. This is a system with only 3 degrees of freedom, g = 3, so the energy density and pressure
of the system

ρπ =
3π2

30
T 4, Pπ =

3π2

90
T 4, (2.23)

This, however, is not the full story. Pions are collective excitations of the non-perturbative QCD
vacuum. This true ground state of the QCD vacuum has a lower-energy −B than the perturbative
QCD vacuum. (In the MIT bag model of hadrons, this energy is the origin of the quark confine-
ment.) Lorentz invariance requires that the energy-momentum density is of form T µν = Bgµν . Thus
the non-perturbative QCD vacuum has a positive pressure as well. Therefore, the total pressure of
the hadronic phase is

Plow = B +
3π2

90
T 4 , (2.24)

On the other hand, from the previous sections, the pressure of the QGP phase with 2 quark flavors
is, PQGP = 37π2T 4/90. Equating the two pressures, we find the transition temperature,

Tc = (45B/17π2)1/4 ∼ 180MeV , (2.25)
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where we have used the MIT bag constant B = 200 MeV as determined by fits to the masses of
physical hadrons.

The energy difference (latent heat) between the two phases at the transition temperature is

∆ρ =
34π2

30
T 4 +B , (2.26)

which is on the order of 2 GeV/fm3.

Another estimate of the transition temperature comes from considering chiral symmetry. At
finite but small temperature, the pion gas will dilute the chiral condensate in the zero-temperature
vacuum. The quark condensate can be calculated as a response of the system’s free energy to the
quark mass,

〈ψψ〉T =
1

Nf

∂F

∂mq
, (2.27)

where Nf is the number of light quark flavors. The free-energy of the pion gas is

F = (N2
f − 1)T

∫

d3~p

(2π)3
ln(1 − e−Eπ/T ) . (2.28)

Thus the pion condensate has the following low-temperature expansion,

〈ψψ〉T = 〈ψψ〉0
[

1 − N2
F − 1

3Nf

T 2

4f2
π

+ ...

]

, (2.29)

where the ellipse indicates higher-order terms in the expansion. If one just keeps the first two
terms, the chiral condensate vanishes when

Tc = 2fπ

√

3Nf/(N
2
f − 1) = 200 MeV , (2.30)

which is consistent with the other estimate.

Clearly, the QCD system is strongly interacting around Tc. On the other hand, the above
estimates relied on calculations which are valid at temperatures much higher than Tc. To say
something rigorous about what happened around Tc, one must resort to lattice QCD, a numerical
approach to solve QCD through computer simulation.

2.5 A Brief Tour in Lattice QCD Thermodynamics

At lower temperatures where the coupling constant is larger one must employ non-perturbative
methods of calculation. The only known method for solving QCD non-perturbatively is on a space-
“time” lattice. Here we present a simple introduction to this method without getting involved in
too many technical details.

Consider a QCD system with temperature T = 1/β and baryon number zero (this is true to
a good approximation in the early universe, as we will discuss later in this chapter). The most
important quantity is the partition function,

Z = Tr[exp(−βH)] , (2.31)
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where H is the QCD hamiltonian and trace is over all physical states in Hilbert space. H is a
function of 3D quark and gluon fields ψ(~x) and Aµ(~x), respectively. One can introduce a fourth
coordinate x4 (imaginary time) and the 4D field

φ(~x, x4) = eHx4φ(~x)e−Hx4 , (2.32)

where φ collectively labels all QCD fields and x4 runs between the values 0 and β. Then the
partition function can be written as a path integral

Z = Tr

∫

D[φ] exp(−S[φ]) , (2.33)

whereD[φ] is a functional integration measure and S[A] is the QCD action defined by the lagrangian
in Euclidean time,

S[φ] =

∫ β

0
dx4

∫

d3~xLEuc. . (2.34)

Therefore, the partition function is now reduced to a functional integral.
Because of the trace in Z, the gluon potentials Aµ obey the period boundary condition in x4,

Aµ(x4, ~x) = Aµ(x4 + β, ~x) , (2.35)

whereas the quark fields obey the anti-periodic condition

φµ(x4, ~x) = −φµ(x4 + β, ~x) . (2.36)

The whole thermodynamics formulation is then invariant under SU(3) gauge transformation with
U(x4, ~x) satisfying the periodic boundary condition.

The path integral formulation makes explicit that QCD is a quantum field theory with an
infinite number of quark and gluon degrees of freedom. To solve it approximately, one first limits
the system to a 3D box of dimensions Lx, Ly, Lz, and then replaces the continuous space-“time”
variables by a discrete 4D lattice. The quark and gluon degrees of freedom now live on the lattice
sites and the bonds in-between the sites, respectively. The number of these d.o.f. is now finite but
large (millions to billions in actual simulations).

The integrations over quark fields are of Gaussian type and can be done analytically. Those over
the gluon fields can be evaluated using the Monte Carlo sampling method. In this approach, classical
gluon configurations are generated on the lattice with the probability distribution corresponding
to the Boltzmann factor e−S . The actual physical observables are calculated with hundreds and
thousands of these “typical” distributions. As an example, the Debye screening mass can be
measured from the space correlation of the gluon fields at equal time. One of the important tools
of the lattice calculation is that one can change the parameters of the theory and study how
observables change in a world different from the real one.

2.6 Quark Masses and The Nature of the Transition

The nature of the QCD transition from high to low temperature depends on strongly on light-quark
masses. For simplicity, let us ignore heavy quarks (c, b, t) and concentrate on up, down and strange
light quarks.
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One powerful theoretical approach to discuss phase transitions is Laudau-Ginsburg theory. In
this framework, one first identifies the order parameter of a transition, which is the fundamental
observable which drives the phase transition. An example of order parameter in water-steam
transition is the density. One then constructs an effective lagrangian of the order parameter which
governs the dynamics of the transition. Here the fundamental symmetry constraints are important
to determine the form of the effective lagrangian, from which one can often say a lot about the
transition without going into the details of the specific dynamics.

If all three quarks are massless, the low-energy order parameter for chiral transition can be
chosen to be Σ, a 3 complex matrix which transforms under chiral SU(3)L × SU(3)R as

Σ → ULΣU †
R , (2.37)

One can then construct an effective lagrangian to describe the dynamics of Σ. One of the term
that one can write down is DetΣ which is trilinear in components of the order parameter. As a
consequence, the chiral phase transition described by the theory is in general a first-order phase
transition.

When the strange quark is infinitely heavy, and up and down quarks remain massless, the
low-energy order parameter can be taken to be a 2 × 2 unitary matrix. The phase transition in
this system is similar to that of an O(4) magnet, a magnetic with four-independent magnetization
direction. The Landau-Ginzburg theory for this system leads to a second-order phase transition.

2nd

2nd

m  = m
u d

ms

1st

1st

N = 3
f

QCD ? 

N = 2f
N = 0

f

N = 1
f

Figure 2.2: Order of phase transition as a function of light quark masses (mu = md) vs. the strange
quark mass(ms).

Therefore, if one varies the mass of the strange quark from large to small, the second-order
phase transition must end at a tri-critical point, beyond which the transition becomes first order.
The tricritical point is characterized by vanishing of the coefficients of the first two terms (quadratic
and quartic) in the potential for the order parameter.

The above consideration is not yet sufficient because the up and down strange quark masses do
not vanish in the real world.
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If up, down and strange quark masses are taken to infinity, we are left with a theory with just
pure glue fields. This system at finite temperature has an interesting symmetry called color Z3

center symmetry. An effective Landau-Ginzburg theory can be constructed to describe the physics
of Z3 symmetry breaking at high-temperature phase. The symmetry argument suggests that the
transition is of first order. The strength of the first-order phase transition lowers as the quark mass
becomes lighter, and finally the first-order phase transition region is enclosed by a second order
phase transition line.

A diagram detailing the nature of QCD phase transitions as a function of quark masses is shown
in Fig. 2.2. In the limit of 3 very light quarks, we expect a first order transition. The first order
transition region is enclosed by a second order transition line which goes through the tri-critical
point. In between the two second-order phase transition lines, one has a broad region of rapid
cross-over. The exact locations of these second-order transition lines are not known. Therefore, for
a realistic physical situation, where the up and down quark masses are on the order of a few MeV
and strange quark mass is about 100 MeV, the transition can either be of a weak first-order or a
rapid crossover (2nd order), as shown by two dots in Fig 2.2.

2.7 Physics of the QCD Transition on Lattice

Lattice simulations of QCD thermodynamics have made significant progress in the last decade,
due to both rapid rise in computational power and implementation of better algorithms. Some of
challenges in achieving a complete realistic simulation include finite lattice size effect, discretization
errors, implementing dynamical quarks, and simulations at small quark masses.

From simulations of QCD on a lattice, a transition in thermodynamic observables is clearly seen
at a fairly well-defined temperature of about TC ≃ 150 MeV. The energy density undergoes a rapid
change near a critical temperature TC , enhanced by almost an order of magnitude, as indicated in
Figure 2.3. Beyond TC , the energy density is fairly flat as a function of temperature but slightly
below that predicted by the free gas model. This rapid change is an indication that the fundamental
degrees of freedom are different above and below TC .

The transition is less dramatic in the equation of state, i.e., the pressure of the system as a
function of temperature. At low-temperature, the pressure is very small. As temperature increases,
the pressure builds up gradually over a large range of T , from Tc to 2Tc. When the pressure curve
flattens out at high-T, it again undershoots the result of the free gas model. The equation of state
is also more sensitive to different quark mass scenarios. These calculations are improved constantly
with smaller quark masses and lattice spacing. Improved calculations show that the transition at
physical quark masses is a rapid cross over.

An interesting property of this transition emerges from the consideration of chiral symmetry in
lattice simulations. Recall that, in the absence of quark masses, the QCD Lagrangian is chirally
symmetric, i.e., nature is invariant under separate flavor rotations of right and left-handed quarks.
This symmetry is evident in the QGP phase at T > TC in the lattice simulations. This is quite
analogous to the symmetric demagnetized state of a ferromagnet above the Curie temperature.
The ferromagnetic property is related to the magnetization M which vanishes above the Curie
temperature. The lattice QCD calculations can provide a measurement of the relevant “order
parameter”, the scalar quark density 〈ψ̄ψ〉, as a function of temperature. This order parameter
provides a measure of the effective mass of a quark in the medium. The result is that at T > TC

this effective quark mass becomes small, approaching zero as T → ∞, as one would expect in
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Figure 2.3: The transition from mesonic matter to the QGP phase as suggested by lattice simu-
lations of QCD. The simulations are carried out with 2 or 3 light flavors or 2 light and 1 heavy
flavor. The expected limits as given by Eq. 2.5 are shown by arrows on the right side of the figure.
(Note that in this figure T actually represents kB times temperature.)

chirally symmetric QCD. As shown in Figure 2.4, below TC there is a sharp increase in 〈ψ̄ψ〉
corresponding to the quarks developing a constituent mass of ∼ 300 MeV. This heavy consituent
quark is the basis of the quark model of hadrons to be discussed in Chapter XX. This transition
to the broken symmetry phase is again analogous to the ferromagnet, which spontaneously breaks
rotational symmetry in developing a finite M below the Curie temperature. Shown in the same
figure is the susceptibility of the condensate which shows a peak at the transition temperature.
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Figure 2.4: The scalar quark density 〈ψ̄ψ〉 measured in lattice QCD as a function of temperature.
At T < TC chiral symmetry is broken, whereas the chirally symmetric limit is realized at higher
temperatures T > TC .

The potential between two quarks is shown for various temperatures in Figure 2.5. One can
see that at low temperatures T < TC , the potential continues to rise at larger distances, consistent
with the expectation that the quarks will be confined as colorless hadrons. At higher temperatures,
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T > TC , one finds that the potential energy at large distances saturates, and it is possible for the
quarks to propagate as a free particle. This confirms the picture that above TC one has a deconfined
plasma.

V(r)

T > T

T < T linear potential

constant potential

r

conf

conf

Figure 2.5: The potential energy between two quarks as a function of the separation distance as
computed by lattice QCD. The calculation is performed for various temperatures showing that
confinement is present at low temperatures T < TC but not above TC .

2.8 Evolution of the Universe in Hadronic Phase

The QGP dominated universe will expand and cool until we reach the critical temperature, TC , to
produce a gas of pions along with a few baryons and antibaryons. The number of baryons is clearly
suppressed by the Boltzmann factor

P ∼ e−MB/T , (2.38)

which is small but still significant. But the universe we observe is clearly not a pion gas, nor the
decayed remnants which would be electrons, positrons and finally just photons. As the universe
cools, the pion densities diminish exponentially as a function of temperature. This decrease is
achieved by the annihilation

π+ + π− → γ + γ , (2.39)

whereas the inverse reaction is difficult because the thermal photons do not have enough energy
to produce pions. Similar process happens for baryons and antibaryons, while they continue to
annihilate, they cannot be reproduced. If the annihilation rate is rapid enough, the density of
baryons follows the thermal Boltzmann distribution. Of course, if the universe had no net baryon
number, all baryons would disappear eventually. However, the existence of matter around us shows
that the baryon number of the universe is not zero. Therefore, as temperature cools, all anti-baryons
are annihilated, all pions are either annihilated and/or decayed, but there is a small tiny baryon
density in the form of proton and neutron survives. (The origin of these baryons is the subject of
the next section of this chapter. Indeed, these protons and neutrons are the main characters of the
remainder of this book.)

What happened to other components of the universe? As temperature lowers, we are left with
just leptons and photons. At temperatures below the electron mass, pairs of electrons and positrons



2.9. THE ORIGIN OF BARYONIC MATTER 33

are no longer created, so they freeze out and annihilate to produce more photons. We enter a phase
of the universe that is dominated by photons and neutrinos: a black-body universe. Of course,
due the charge neutrality, a small fraction of electron residue is also present. The energy density
will continue to decrease as t−2 until much later when, it turns out, the small fraction of baryonic
matter becomes a significant factor in the energy density.

We still observe the remnant black-body radiation associated with the early universe. (The
neutrinos have not been observed, but are discussed in Chapter 8.) There is presently a uniform
distribution of cosmic microwave radiation with a characteristic temperature of (2.725± 0.001)◦ K
and a number density of 410.4±0.5/cm3. The present baryon to photon ratio is tiny, about 6×10−10,
but the photons have energies of ∼ 2.5× 10−4 eV and the baryons have energy Mp ∼ 1 GeV. Thus
the energy density of the baryons is about 2400 times the energy density of the photons. As the
universe cooled from the “radiation dominated” era to the present, the photons were red-shifted
due to the expansion. The photons decoupled from the protons and electrons when the latter
combined into neutral hydrogen. Since then (temperature T ∼ 0.3 eV) the photons have been
red-shifted by about 104, while the protons remained at Mp ∼ 1 GeV. Thus we now find ourselves
in an era where baryonic matter dominates over the cosmic photons. (In addition, we have dark
non-baryonic matter and dark energy which remain to be understood - but that is a different story
and we will confine our attention here to the baryons and photons.)

2.9 The Origin of Baryonic Matter

Let’s now return to the source of the baryonic matter. While the present baryon to photon ratio
is indeed tiny, that is the stuff of which we are made. Since the early universe should consist of
equal numbers of quarks and antiquarks, eventually they should all annihilate to produce only
photons in the end. The observed number of baryons is much greater than can be expected from
a random fluctuation associated with the cooling of the enormous number of quarks and gluons in
the initial plasma. The annihilation of baryons and antibaryons ceases at a rather low temperature
of ∼ 20 MeV. The number density of baryons and antibaryons at this temperature is given by the
expression (for gB species of non-relativistic particles)

nB = gB

(

MpT

2π

)3/2

e−
Mp

T . (2.40)

The corresponding number density of photons is

nγ ≃ 2

π2
T 3 (2.41)

so the ratio is approximately

nB

nγ
∼ gB

(

Mp

T

)3/2

e−
Mp

T (2.42)

∼ 10−19 (@T = 20 MeV) . (2.43)

We would expect the chance excess of baryons over antibaryons to be a very small fraction of the
total number of both. Therefore, the observed 6× 10−10 fraction of baryons relative to the number
of photons is not possible to generate by just a statistical fluctuation.
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So what is the mechanism that generates the small excess of matter over antimatter? The
modern view is that the observed excess of baryonic matter relative to antimatter is likely due
to the properties of particles and their interactions during the expansion and cooling of the early
universe. This can occur if three criteria, initially discussed by Sakharov, are satisfied:

1. baryon number (B) is violated so that baryons (and antibaryons) can be created,

2. CP is violated so that the rates of baryon and antibaryon production can be different,

3. thermal equilibrium is broken so that forward and reverse reactions become unbalanced.

Studying baryogenesis has been a very active area of theoretical physics for the last few decades.
In the standard model, the baryon number can be violated through non-perturbative process via
the so-called anomaly. However, to generate enough baryons, one must have a strong first order
phase transition which is hard to achieve with the heavy Higgs mass. Moreover, the standard model
CP violation through the CMK matrix is too small to generate enough CP asymmetry. Therefore,
it appears that baryogensis requires physics beyond the standard model. One of the interesting
direction is what happens in a supersymmetric extension of the standard model.

In grand unified models, baryon number is in general violated. One consequence is that protons
would be unstable and decay, typically by a process like p → e+π0. Searches for such decays limit
the proton lifetime to τP > 1032 years. Consider a heavy particle of mass MX . Fermi’s golden rule
can be used to calculate the decay rate as

Γ = |〈f |HX |i〉|2 dNf

dEf
. (2.44)

The matrix element will be proportional to αX/M
2
X where αX is the squared coupling constant

and the M−2
X is the propagator for the heavy particle exchange. Since the only other energy scale

in the problem is the proton mass Mp we can write by dimensional analysis

τP ∼ 1

M5
P

(

M2
X

αX

)2

. (2.45)

Using the experimental limit for τP and assuming αX ∼ 0.1 one obtains a rough limit for the
mass of the heavy particle responsible for baryon number violating interactions MX > 1016 GeV.
In a typical baryogenesis scenario, one might generate long-lived heavy particles X in the very
early universe when T > MX . At T < MX the X particles freeze out and then much later, when
the universe is cooler, they decay into baryons and antibaryons. The presence of CP violation
in the decays enables a production of an excess of baryons over antibaryons. However, it is now
generally believed that this excess gets washed out at lower temperature by the so-called electroweak
sphaleron process.

In more recent years, massive right-handed neutrinos have been considered as good candidates
to lead to baryogensis. These particles could have masses slightly smaller than the grand unifi-
cation scale, and decay asymmetrically (due to CP violation in lepton sector) to produce a net
lepton number. This lepton number can be converted in to baryon number through the sphaleron
processes. This route of generating baryon asymmetry is called leptogenesis.
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2.10 ***Appendix for Chapter 2****

2.10.1 Ginzburg-Landau Theory for Phase Transitions

In a first-order phase transition, the free-energy is continuous and its first-order derivatives are
not. In a second-order transition, the first-order derivative of the free energy is continuous and the
second-order derivatives are not.

Quite often, phase transitions involve a transition from a symmetrical phase to a less symmet-
rical one, or vice versa, i.e., a symmetry-breaking transition. For instance, in the transition from
a paramagnetic to a ferromagnetic system, the rotational symmetry is broken because a sponta-
neous magnetization defines a unique direction in space. In transition from normal liquid 4He to
superfluid liquid 4He, gauge symmetry is broken. Near the critical point in liquid-gas transition,
the distinction between liquid and gas disappears above the critical point.

Because of this rather distinct feature of the transitions involving symmetry-breaking, a new
macroscopic parameter was introduced by Landau to describe the transition phenomenologically,
and is called order parameter. The order parameters take zero in a symmetrical phase and non-
zero in the unsymmetrical (or less symmetrical) one. The order parameters may be a scalar, vector
or tensor, a complex number, or some other quantity, depending on the symmetry of the transition
involved. The order parameter changes continuously near the second phase transition point, so the
volume or entropy do not change abruptly. For this reason, a second-order phase transition is also
called a continuous transition. One important difference between the order parameter and other
macroscopic variables such as pressure and temperature is that the values of the order parameter
are determined by minimizing the thermodynamic potential of a system.

Ginzburg and Landau found a general way to describe symmetry-breaking phase transitions
in terms of a free energy functional involving order parameters. For simplicity, let us assume the
order parameter is a vector ~η and construct a free energy which has a minimum at ~η = 0 above
the transition point (T > TC) and ~η 6= 0 below it. The free energy which is a scalar function of
the order parameter, depending on the scalar-scalar product ~η · ~η. Near the phase transition point
where |~η| is small, one can make the following Taylor expansion,

Φ(T, ~η) = Φ0(T ) + α2(T )|~η|2 + α4(T )|~η|4 + · · · (1)

If we choose α2(T ) = α0(T − TC), then when T > TC , α2 > 0 and ~η = 0 is a local minimum of Φ,
when T < TC , α2 < 0 and ~η = 0 is a local maximum. This can be seen by plotting Φ as a function
of |~η| near ~η = 0. This choice makes the order parameter behave in the way described above. To
ensure ~η = 0 is also a global minimum for T > TC , we take α4(T ) > 0 at all T .

If we neglect the high-order terms in (1), the potential and the order parameter of the system
evolve with temperature in the following way. At T > TC the potential is shown in Fig. xx: ~η = 0
is the minimum and the system is in the symmetrical phase. At T < TC , the potential is shown in
Fig. 1b, and there are minima at |~η| = const. with arbitrary phase and a local maximum at ~η = 0.
These can be obtained from

∂Φ

∂~η
= 2α2~η + 4α4 |~η|2 ~η = 0 , (2)

which gives

~η = 0 , |~η| =

√

−α2

2α4

. (3)
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The second equation tells us that the order parameter changes as (TC − T )β with β = 1
2

below TC .
β is one of the critical exponents that are introduced to characterize the singular behavior of an
observable near the critical point. We will introduce more critical exponents below.

Substituting (3) into (1), we find the free energy

Φ(T ) =















Φ0(T ) T > TC

Φ0(T ) − α 2
2

/

4α4 T < TC

(4)

Thus Φ and its first derivative are continuous across TC . However the second-order derivative which
is related to specific heat,

C = −T ∂
2Φ

∂T 2
, (5)

is discontinuous. It is easy to show

C|T=T −

C
− C|T=T +

C
= TC

α 2
0

2α4

(6)

If one defines C ∝ |T − TC |−α where α is another critical exponent, then α = 0.
When an external field ~h is applied to the system, the potential is added with a term ~η · ~hV ,

where V is the volume of the system. Then ~η 6= 0 at any temperature, and the second-order phase
transition disappears. Eq. (2) becomes

2α2~η + 4α4|~η|2 ~η = ~hV (7)

Above TC , |~η| is small, and we have ~η = ~hV/2α2. The susceptibility is

χ =
∂~η

∂~h

∣

∣

∣

∣

~h=0

=
V

2α2

∼ |T − TC |−γ (8)

where the critical exponent γ is 1. Below TC , ~η = ~hV/(−4α2) and again χ ∼ |T − TC |−γ′

with
γ′ = 1.

At T = TC we have the following relation between order parameter and the applied field,

η =

(

hV

4α4

)
1

3

∼ h
1

δ , (9)

where the critical exponent δ is 3.
The critical exponents in Landau theory are independent of the specific values of the parameters

that appear in (1). They are completely universal. In other words, the phase transitions in very
different physical systems exhibit the same singular behavior. A general theory of phase transition
must capture this universality feature.

2.11 Problem Set

1. Calculate the number and energy densities of a relativistic fermion/boson gas. And show that
in the standard model g∗ = 106.75.
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2. Calculate the temperature as a function of time during radiation-dominated era of the early
Universe, up to the normalization factor.
3. Calculate the free-energy of a free pion gas, from which derive the dependence of the chiral
condensate in temperature to first order in T 2/f2

π .
4. Show that the thermodynamic function of QCD without quarks has a Z3 symmetry. Construct
a Ginzburg-Landau theory for Z3 phase transition and show it is a first-order transition.
5. Calculate the baryon energy density over the photon energy density in the universe.


